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1. INTRODUCCIÓN

In this thesis we are concerned with the analysis, de-
velopment and implementation of a multigrid algorithm
for the numerical solution of a class of variational inequa-
lities of the second kind: let Ω be an open and bounded
set in Rn with Lipschitz boundary ∂Ω, find u ∈ W1,p

0 (Ω)
such that∫

Ω
|∇u|p−2(∇u,∇(v− u)) dx + g

∫
Ω
|∇v| dx (1)

−g
∫

Ω
|∇u| dx ≥

∫
Ω

f (v− u) dx, ∀v ∈W1,p
0 (Ω),

where 1 < p < ∞, g > 0 and f ∈ Lq(Ω). Here,
q = p

p−1 stands for the conjugate exponent of p.
The numerical resolution of variational inequalities

involving the p-Laplacian constitutes an important re-
search field. This operator is part of many mathematical
models and has been widely studied due to its importan-
ce in modelling physical processes such as visco-plastic
fluids flow, glaciology and diffusion and filtration pro-
cesses (see [1, 8]). These problems are related to a wide
range of industrial applications that can be studied inside
the large scale optimization framework. Large scale pro-
blems involve a great amount of variables, thus, its nu-
merical solution could take long periods of computation
when executing an algorithm.

We also know that a variational inequality corres-
ponds to the necessary condition of an optimization pro-

blem. Particularly, the solution of the variational inequa-
lity (1) corresponds to a first order necessary optimality
condition for the following optimization problems.

mı́n
u∈W1,p

0 (Ω)

J(u) :=
1
p

∫
Ω
|∇u|p dx +

∫
Ω
|∇u| dx−

∫
Ω

f u dx.

(2)
In consequence, throughout this work we will focus in
the resolution of this optimization problem. Since our
problem involves the L1-norm, it corresponds to a non-
differentiable minimization problem. Then, we propose
a local Huber regularization technique to deal with the
non-differentiable term. Further, we propose to solve the
optimization problem by using a multigrid optimization
(MG/OPT) algorithm. This algorithm was introduced as
an efficient tool for large scale optimization problems (see
[19, 17]). In [17] a multigrid optimization method is al-
so presented for the optimization of systems governed
by differential equations. The MG/OPT method focuses
in optimization problems which are discretized in diffe-
rent levels of discretization generating a family of sub-
problems of different sizes. The idea of the algorithm is
to take advantage of the solutions of problems discreti-
zed in coarse levels to optimize problems in fine meshes.
The efficient resolution of coarse problems provide a way
to calculate search directions for fine problems. Our pur-
pose in this work is to propose, implement and analyze
the MG/OPT algorithm for the resolution of nonsmooth
problems with a finite element scheme. As the name im-
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plies, the application of the MG/OPT method involves an
underlying optimization algorithm at each level of dis-
cretization. Due to the limited regularity of the functio-
nal J and the p- Laplacian involved therein, we propose
a class of descent algorithms such as the gradient met-
hod and a preconditioned descent algorithm (see [9]) as
the underlying optimization algorithms. Particularly, the
preconditioned descent algorithm was proposed to solve
variational inequalities involving the p-Laplacian. Hen-
ce, our aim is to take advantage of the computational ef-
ficiency of the multigrid scheme and combine it with a
suitable optimization algorithm for type problems (2).

1.1 Regularization and discretization

The minimization problem (2) involves a convex non-
smooth functional. The norm |∇y| in the second term
leads us to a non-differentiable problem . We propose a
local Huber regularization procedure in order to solve
this issue. This regularization only changes locally the es-
tructure of the functional, preserving the qualitative pro-
perties. This regularization has been used in several con-
tributions (see [9]).

Let us introduce, for γ > 0, the function ψγ : Rn → R

as follows:

ψγ : z→ ψγ(z) =

{
g|z| − g2

2γ i f |z| > g
γ

γ
2 |z|2 i f |z| ≤ g

γ .

The function ψγ corresponds to a local regularization
of the Euclidean norm. Thanks to this procedure we ob-
tain the following regularized optimization problem

mı́n
u∈W1,p

0 (Ω)
Jγ(u) :=

1
p

∫
Ω
|∇u|p dx +

∫
Ω

ψγ(∇u) dx−
∫

Ω
f u dx.

(3)

1.2 Finite element formulation

Let us introduce the finite element formulation of pro-
blem (3). Let Ωh be a triangulation of the domain Ω ,
ne ∈ N the number of triangles Ti such that Ω̄h = ∪ne

i=1Ti
and n the number of nodes of the triangulation Ωh. For
any two triangles, their clousures are either disjoint or
have a common vertex or a common edge. Finally, let
{Pj}j=1,··· ,n be the vertices (nodes) associated with Ωh. Ta-
king this into account, we define

Vh := {vh ∈ C(Ω̄h) : vh|Ti ∈ P1, ∀Ti ∈ Ωh},

where P1 is the space of continuous piecewise linear fun-
ctions defined on Ωh. Then the following space

V0
h = W1,p

0 (Ω) ∩Vh (4)

is the finite-dimensional space associated with the trian-
gulation Ωh.

Considering the previous analysis, the finite element
approximation of (3) is formulated as follows

mı́n
uh∈V0

h

Jγ,h(uh) :=
1
p

∫
Ωh

|∇uh|p dx +
∫

Ωh

ψγ(∇uh) dx (5)

−
∫

Ωh

f uh dx.

2. MULTIGRID METHODS

In this chapter we present the multgrid (MG) methods
for solving discretized partial differential equations. This
methods constitutes the basis of the multigrid optimiza-
tion algorithm that will be applied in the development of
this thesis. As the name implies, in the multigrid methods
we work with problems discretized in different grids or
meshes of several sizes. The method involves the applica-
tion of an iterative method for solving the discrete partial
differential equation. Then, the two main ideas of the al-
gorithm is to take advantage of the smoothing effect that
several iterative methods have on the error of an appro-
ximated solution and, using the size of the grids, to ap-
proximate this smooth error on a coarse grid in order to
correct quantities. In what follows we explain these two
considerations introducing the multigrid method for the
discretized Poisson problem with Dirichlet boundary con-
ditions.

−∆huh(x, y) = fh(x, y) in Ωh
uh(x, y) = gh(x, y) on ∂Ωh

(6)

where Ω ⊂ R2, h = 1
n , with n ∈N.

There is a wide range of iterative methods to solve this
particular problem, we can enumerate the Gauss-Seidel,
Jacobi, Conjugate gradient and SOR methods among ot-
hers. Let us denote by IM (Iteration Method) the itera-
tion formula of any method and ul

h the aproximation of
uh(xi, yj) at iteration l. Then, we have

ul+1
h (xi, yj) = IM(ul

h(xi, yj), fh)

where (xi, yj) ∈ Ωh. If we apply the previous equa-
tion to the Poisson problem a few times, the error of the
aproximation vl

h(xi, yj) = uh(xi, yj)− ul
h(xi, yj) becomes

smooth. Hence, the iteration formula can be interpreted
as an error averaging process. Classical iterative methods
have the property of smoothing the error for discrete
elliptic problems [23, Sec 1.5]. The second main property
of the multigrid approach consists in approximating the
error on a coarse grid, this procedure is less expensive
due to the fact that we have fewer grid points. It is called
the coarse grid correction procedure.

Let us illustrate the smoothing process and the coarse
grid principle by looking at the error vh(x, y). Since it is a
function of x and y we can rewrite it as follows:

vh(x, y) =
n−1

∑
k,m=1

αk,m sin kπx sin mπy. (7)

Here, the functions

ϕk,m
h (x, y) = sin kπx sin mπy (k, m = 1, · · · , n− 1) (8)
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are the discrete eigenfunctions of the discrete operator
∆h. Then, the error has high frequency and low frequency
components. We call high frequency components to the
following functions:

αk,m sin kπx sin mπy with k or m large (9)

and low frequency components to

αk,m sin kπx sin mπy with k or m small (10)

The error becomes smooth because the high frequency
components become small after some iterations steps of
the iterative method. On the other hand, the low fre-
quency components hardly change.

The coarse grid principle is explained as follows: let
us consider the Poisson problem on a grid Ωh with mesh
size h = 1

n . Since we have to approximate the error on a
coarse grid, we consider the coarser grid ΩH with mesh
size H = 2h, which is always used in the multigrid frame-
work. Then, we observe that the following eigenfunctions
coincide on ΩH in the following sense [23, Sec. 1.5.2]:

ϕk,m(x, y) = −ϕn−k,m(x, y) = −ϕk,n−m(x, y) = ϕn−k,n−m(x, y),

for (x, y) ∈ Ω2h .
Then, the previous eigenfunctions cannot be distin-

guished on ΩH . Thus, we can redefine the components
of the error as follows:

• low frequency if máx(k, m) < n
2 ,

• high frequency if n
2 ≤ máx(k, m) < n.

For k or m = n
2 , the components ϕk,m vanish on Ω2h.

Then, we can approximate the error on a coarser grid.

2.1 Two-grid scheme
In what follows we present the multigrid algorithm

for solving the Poisson problem (6), we introduce the
smoothing procedure and the coarse grid correction pri-
ciples as the fundamental ideas inside the multigrid ap-
proach. In order to illustrate the method we work with
two grids and use the matrix notation Ah instead of the
operator −∆h with the Dirichlet boundary coditions. For
simplicity, we drop the dependence of the pair (xi, yj).
Then we have the system

Ahuh = fh. (11)

Using an iterative method with a smoothing property we
have, after a few (ν1) iterations of the method, an appro-
ximated solution uν1

h . The error is denoted by

vh = uh − uν1
h

and the residual is given by

rh = fh − Ahuν1
h . (12)

Then, we have the residual equation

Ahvh = rh. (13)

Since uh = uν1
h + vh, the residual equation (13) is equiva-

lent to (11), however, vh and rh are smooth. Then, without
any important loss of information, vh can be approxima-
ted on a coarse level as the solution of a coarse problem
defined by

AHvH = rH , (14)

where H = 2h is the size of the coarse mesh. As we can
see from the previous system, we need to redefine the re-
sidual in the coarser mesh. Thus, we introduce the fine-to-
coarse grid transfer operator IH

h , which is a restriction ope-
rator that transfers information from the fine grid to the
coarser one. Then we have that rH = IH

h rh. On the other
hand, AH corresponds to the −∆H operator discretized
on the mesh with size H. If we solve system (14) we ob-
tain vH , which can be seen as an approximation of vh on
a coarse grid, i.e., an smooth approximation of the error
of the solution in a coarse grid. Hence, we can interpola-
te this correction to the fine grid through the coarse-to-fine
grid transfer operator Ih

H . Since we have that uh = uν1
h + vh,

we can update the solution and compute a new approxi-
mation as follows

unew
h = uν1

h + Ih
Hvh. (15)

Taking into account the previous disscusion, we present
the twogrid algorithm. Let us recall that the application
of any iterative method (with smoothing properties) to
solve problem (14) is denoted by ul

h = IM(ul−1
h , fh). In

the literature, it is usual to denote this smothing proce-
dure as ul

h = S(ul−1
h , fh). Finally, the two-grid algorithm

reads as follows:

Algoritmo 2.1 Two-grid method for solving Ahuh = fh.

Pre-smoothing
• Compute uν1

h applying ν1 iterations of an iterative
method:

u`
h = IM(u`−1

k , fh), ` = 1, . . . , ν1.

Coarse-grid correction
• Computation of the residual: rh = fh − Ahuν1

h

• Restrict: rH = IH
h rh.

• Solve: AHvH = rH on ΩH .

• Interpolate the correction: v̂h = Ih
HvH .

• Compute the corrected approximation: uν1+1
h =

uν1
h + v̂h.

Post-optimization
• Apply ν2 iterations of an iterative algorithm:

ul
h = IM(ul−1

h , fh), ` = ν1 + 2, . . . , ν1 + ν2 + 1.

In the coarse-grid correction procedure, when inter-
polating the correction v̂h = Ih

HvH , the procedure may
introduce some errors. Then, it is necessary to apply ν2
iterations of the smoothing process.
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2.2 Multigrid scheme

The two-grid method corresponds to the basis of the
multigrid, MG, algorithm. However, the two-grid sche-
me is not widespread used in practice due to the fact that
the coarse problem is still very large. Even more, there
is no need to solve the coarse system (14) exactly. Sin-
ce the residual equation in the coarse space has the sa-
me form as system (11), we can use an approximation
to vH . The idea of the multigrid algorithm is to apply
the two-grid scheme in order to determine an approxi-
mation to vH . This means that we have to introduce an
even coarser grid and coarser problem. In the multigrid
algorithm, the previous idea is applied recursively until
an specific coarsest grid, where the residual equation is
solved by any method (even a direct method) because it
is inexpensive to solve in the few points of the coarsest
grid. In order to present the multigrid algorithm, we first
need to introduce a sequence of partitions {Ωk}k=0,...,m
of Ωh such that the mesh size of the grids satisfies that
hk = 1

2 hk−1. Then, Ω0 corresponds to the coarsest grid
and Ωm is the finest one. Also, the multigrid approach
involves several auxiliary operators. As we are working
with a set of meshes and the algorithm runs at each level
of discretization, we need to transfer information among
the different grids. Hence, we introduce the fine-to-coarse
grid transfer operator, Ik−1

k , and the coarse-to-fine grid trans-
fer operator, Ik

k−1. Given a coarse mesh denoted by Ωk−1,
we can obtain a finer mesh Ωk by regular subdivision.
As the name implies, the coarse-to-fine grid transfer opera-
tor transfers information from the coarse mesh Ωk to the
finer mesh Ωk−1. It is also called the prolongation ope-
rator. The fine-to-coarse grid transfer operator or restriction
operator transfers information from the fine grid to the
coarser one. Once we have introduced the auxiliary ope-
rators we are ready to introduce the multigrid algorithm.
In the multigrid scheme we introduce the cycle index γ,
which corresponds to the number of times the multigrid
scheme is applied to obtain a good aproximation to the
solution of Ak−1vk−1 = rk−1. When γ = 1 the multigrid
scheme is called V-cycle, in the case γ = 2 we refer it as
the W-cycle (see Figure 1).

Figura 1. MG scheme with four grids. Left: γ = 1, right: γ = 2
[23, Sec. 2.4].

Algoritmo 2.2 Multigrid algorithm for solving Akuk = fk.

If k = 0, solve Akuk = fk directly.
Pre-smoothing
• Compute uν1

k applying ν1 iterations of an iterative
method:

u`
k = IM(u`−1

k , fh), ` = 1, . . . , ν1.

Coarse-grid correction
• Computation of the residual: rk = fk − Akuν1

k

• Restrict: rk−1 = Ik−1
k rk.

Compute an approximated solution vk−1 of the residual
equation

Ak−1vk−1 = rk−1

on Ωk−1 by performing k-grid cycles as follows:

• Set vk−1 = 0

• Call γ times the MG scheme to solve Ak−1vk−1 =
rk−1.

• Interpolate the correction: vk = Ik
k−1vk−1.

• Compute the corrected approximation: uν1+1
k =

uν1
k + vk.

Post-optimization
• Apply ν2 iterations of an iterative algorithm:

ul
k = IM(ul−1

k , fh), ` = ν1 + 2, . . . , ν1 + ν2 + 1.

2.3 Full multigrid scheme

The main idea of the full multigrid, FMG, scheme is
to provide a good initial approximation at each level k of
discretization, i.e., at each grid Ωk, we start with a good
approximation. Given a discrete problem, the FMG sche-
me uses nested iterations starting from a coarse grid, at
this level, since we have few points in the grid, we can
inexpensively solve the discrete problem. Then, the algo-
rithm interpolates this solution to the next finer grid. The
interpolated solution corresponds to the first guess at this
new level. The algorithm repeats this process up to a cer-
tain finest grid. It is important to recall that, at each level
of discretization, we perform a few, r, cycles of the MG
scheme. The structure of the FMG is presented in Figure
2.

Figura 2. FMG scheme with r = 1 and γ = 1 [23, Sec. 2.6].
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As we can see from Figure 2, the FMG scheme invol-
ves an interpolator operator that will be denoted by Πk

k−1,
generally speaking, this operator is of a higher accuracy
than the operator Ik

k−1. However, if no such accuracy is
needed, one can use the coarse-to-fine grid transfer operator,
Ik
k−1. In what follows we present the FMG algorithm.

Algoritmo 2.3 Full multigrid algorithm for solving
Akuk = fk.

For k = 0, solve Akuk = fk, providing uFMG
k = u0.

For k = 1, 2, · · · , m:

• u0
k := Πk

k−1uFMG
k−1

• Apply r times MG γ-cycles to solve Akuk = fk
initialized with u0

k .

• uk = uFMG
k .

2.4 Multigrid methods for nonlinear pro-
blems, FAS scheme

The multigrid algorithm can also be applied to nonli-
near problems. The most common multigrid algorithm in
the nonlinear framework is the full approximation scheme,
FAS [2]. The structure of this algorithm constitutes the ba-
sis for the multigrid optimization method and other ad-
vanced multigrid techniques [23, Sec. 5.3.7]. In what fo-
llows we briefly present the FAS idea for solving the non-
linear differential equation:

Nk(uk) = fk, (16)

where Nh(·) is a discrete nonlinear differential operator.
At the starting point of the FAS algorithm we apply a
few times a nonlinear iterative method (or a relaxation
type method [23, Sec 5.3.2]), for solving problem (16). As
we know from the previous sections, this procedure co-
rresponds to the smoothing process of the error and it is
denoted by uk = IM(uk, f ). Since we apply this process
only a few times we obtain an approximated solution ũk.
Thus, the desired solution uk is given by uk = ũk + vk,
where vk is the error at level k. Hence, we rewrite the pro-
blem as follows.

Nk(ũk + vk) = fk.

If we define the residual as rk = fk−Nk(ũk), we can write
the correction equation in the following way.

Nk(ũk + vk)− Nk(ũk) = rk. (17)

Now, let’s represent ũk + vk on the coarse grid in terms of
the coarse-grid variable

ûk−1 := Îk−1
k ũk + vk−1.

Here, in contrast to the multigrid scheme, we per-
form a restriction procedure of the approximated solu-
tion ũk through the operator Îk−1

k . This operator may

be different from Ik−1
k [23, Sec. 5.3.4]. In the same way,

we formulate equation (17) on the coarse level by repla-
cing Nk(·) by Nk−1(·), ũk by Ik−1

k ũk, and rk by Ik−1
k rk =

Ik−1
k ( fk − Nk(ũk)). Finally, we get the FAS equation:

Nk−1(ûk−1) = Ik−1
k ( fk − Nk(ũk)) + Nk−1(Ik−1

k ũk). (18)

This equation can be rewritten as follows

Nk−1(ûk−1) = Ik−1
k fk + τk−1

k ,

where

τk−1
k = Nk−1(Ik−1

k ũk)− Ik−1
k Nk(ũk),

this term is called fine-to-coarse residual correction. Then, a
simple but important fact is that the fine grid is now used
as a mechanism for calculating the correction τk−1

k to the
FAS equation. The next step consists in the coarse-grid co-
rrection: the interpolation Ik

k−1ûk−1 introduces errors of
the full solution ûk−1 instead of only the error vk−1 as
in the multigrid scheme. For this reason, the following
coarse-grid correction is used

uk = ũk + Ik
k−1(ûk−1 − Ik−1

k ũk).

Algoritmo 2.4 FAS scheme for solving Nk(uk) = fk

if k = 0 then
solve Nk(uk) = fk directly.

end if
Pre-smoothing steps:
ul

k = S(ul−1
k , fk), for l =, 1, · · · , ν1.

Coarse grid correction:

• Computation of the residual: rk = fk − Nkuν1
k .

• Restriction of the residual: rk−1 = Ik−1
k rk.

• Set uk−1 = Ik−1
k u(ν1)

k .

• Set fk−1 = rk−1 + Nk−1(uk−1).

• Call γ̂ times the FAS scheme to solve
Nk−1(uk−1) = fk−1.

• Compute the corrected approximation: uν1+1
k =

u(ν1)
k + Ik

k−1(uk−1 − Ik−1
k u(ν1)

k ).

Post-smoothing steps on the fine grid:
u(l)

k = S(u(l−1)
k , fk), for l = ν1 + 2, · · · , ν1 + ν2 + 1.

For further details of the FAS scheme we refer the
reader see [2]. Considering the scheme of the FAS met-
hod, in the next chapter we introduce the multigrid op-
timization, MG/OPT algorithm. Multigrid for optimiza-
tion problems, MG/OPT In this chapter, we present the
multigrid optimization (MG/OPT) algorithm for solving
the discretized and regularized optimization problem
(5). The MG/OPT method corresponds to a nonlinear
programming adaptation of the full approximation sche-
me, FAS (see [2, 23]). The multigrid subproblems arising
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from the different discretization levels are nonlinear op-
timization problems [17]. The MG/OPT method was in-
troduced as an efficient tool for large scale optmization
problems (see [19, 17]). In fact, the idea of the algorithm
is to take advantage of the solutions of problems dis-
cretized in coarse meshes to compute search directions
for finer problems. The efficient resolution of coarse pro-
blems provide a way to calculate search directions for
large optimization problems.

3. MG/OPT ALGORITHM

Now we are ready to discuss the MG/OPT method
for problem (5). In order to understand the link between
the FAS structure and the MG/OPT scheme, we present
one iteration loop for the two-grid optimization algo-
rithm ([3, Sec.6]). As we are working only with two grids,
the finest grid is Ω1 and the coarsest one is denoted by
Ω0. Therefore the solutions u1 and u0 correspond to the
solutions in the grids Ω1 and Ω0 respectively.

In the two-grid algorithm, at the coarsest grid, k = 0,
we solve

mı́n
uk

Jγ,k(uk),

otherwise, we apply ν1 iterations of an optimization al-
gorithm to the problem and obtain an approximated so-
lution uν1

1 . Consequently the desired solution u1 is given
by u1 = uν1

1 + e1, for some error e1, and the problem

mı́n
u1

Jγ,1(u1)

is equivalent to solving ∇Jγ,1(u1) = 0. Thus, we can wri-
te the problem as follows

∇Jγ,1(u
ν1
1 + e1) = 0

or

∇Jγ,1(u
ν1
1 + e1)−∇Jγ,1(u

ν1
1 ) = −∇Jγ,1(u

ν1
1 ). (19)

Now, following the idea of the FAS scheme, our aim is to
present this problem on the coarsest grid. Therefore, we
restrict uν1

1 + e1 to the grid Ω0 as follows

u0 = I0
1 uν1

1 + e0.

Then, we can represent (19) on Ω0. The main idea is to ob-
tain the structure of the FAS equation (18) in order to take
advantage of the FAS algorithm’s scheme. Hence, we for-
mulate equation (19) on the coarse level by applying the
operator I0

1 to the right-hand side. The left-hand side is
represented by ∇Jγ,0(·) and applying I0

1 to uν1
1 . Then, the

equation reads as

∇Jγ,0(u0)−∇Jγ,0(I0
1 uν1

1 ) = −I0
1∇Jγ,1(u

ν1
1 ). (20)

If we denote

τ0 = ∇Jγ,0(I0
1 uν1

1 )− I0
1∇Jγ,1(u

ν1
1 ),

then we have the following equation:

∇Jγ,0(u0) = τ0. (21)

At this point, solving the previous equation is equivalent
to solving the optimization problem

mı́n
u0

(Jγ,0(u0)− f>0 u0),

where f0 = τ0 in the grid Ω0. Suppose that the solution to
the problem in the coarsest grid is u0. Then, the next step
is called the coarse-to-fine minimization step and consists
in performing a line search procedure

u1 = uν1
1 + αI1

0 (u0 − I0
1 uν1

1 ). (22)

Where α is the step size and the descent direction is
I1
0 (u0 − I0

1 uν1
1 ). In the last step we apply ν2 iterations of

an optimization algorithm to the original problem inicia-
lized with u1. Finally, we obtain uν1+ν2+1

1 . At this point,
we can compare the scheme presented with the FAS al-
gorithm. An important but simple fact is that MG/OPT
algorithm is a programming adaptation of the FAS sche-
me.

Once we have introduced the algorithm for two grids
we first make some comments before introducing the
multigrid algorithm. MG/OPT is related to different op-
timization techniques ranging from the gradient method
to quasi Newton methods to solve the problems at each
level. The multigrid for optimization approach makes mi-
nimal requests about the underlying optimization algo-
rithm. However, it is important to highlight that at each
level of discretization we need to find an estimated so-
lution for the minimization subproblem. Then, the elec-
tion of the underlying optimization algorithm is not tri-
vial and depends on the inner characteristics of the op-
timization problem. As our goal is to solve problem (5),
we use a class of descent algorithms as the underlying
algorithm. This choice was made based on the structu-
re of problem (5). As the p - Laplacian is involved in the
functional, we have to consider that its finite element ap-
proximation derives in a highly nonlinear and degenera-
te finite dimensional problem [13]. Also, the functional
Jγ,h involves a semismooth regular function. Then, the
class of descent algorithms chosen is suitable to deal with
this issue. As we mentioned before, the main idea of the
MG/OPT algorithm is to use coarse problems to genera-
te, recursively, search directions for finer problems. Then,
a line search procedure, along with the underlying opimi-
zation algorithm is used to improve the solution on each
level of discretization.

In what follows we present the MG/OPT algorithm.
The underlying optimization algorithm will be denoted
by Sopt inside the multigrid approach. The initial discre-
tized problem is given on the finest grid. To facilitate the
implementation of the algorithm, the MG/OPT scheme is
presented in a recursive formulation. Hence, we introdu-
ce the following slightly different notation for the optimi-
zation problem

mı́n
uk

(
Ĵγ,k(uk)− f>k uk

)
.
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We set fk = 0 at the finest level k = m. Ĵγ,k corresponds
to the functional Jγ discretized at each level k = 1, . . . , m.
Summarizing, the algorithm is presented as follows.

Algoritmo 3.1 MG/OPT recursive(ν1, ν2).

if k = 0 then, solve mı́nuk

(
Ĵγ,k(uk)− f>k uk

)
and return.

end if
Otherwise, k > 0.
Pre-optimization: Apply ν1 iterations of the optimiza-
tion algorithm to the problem at level k.

u`
k = Sopt(u`−1

k ), ` = 1, . . . , ν1.

Coarse-grid correction.
• Restrict: uν1

k−1 = Ik−1
k uν1

k .

• Compute the fine-to-coarse gradient correction:

τk−1 := ∇ Ĵγ,k−1(u
ν1
k−1)− Ik−1

k ∇ Ĵγ,k(u
ν1
k ).

• Define fk−1 := Ik−1
k fk + τk−1 and apply one cycle

of MGOPT(ν1, ν2) to

mı́n
uk−1

(
Ĵγ,k−1(uk−1)− f>k−1uk−1

)
to obtain ũk−1.

Coarse-to-fine minimization.

• Prolongate error: e := Ik
k−1(ũk−1 − uν1

k−1).

• Line search in e direction to obtain a step size αk.

• Calculate the coarse-to-fine minimization step:
uν1+1

k = uν1
k + αke.

Post-optimization: Apply ν2 iterations of the optimiza-
tion algorithm to the problem at level k.

u`
k = Sopt(u`−1

k ), ` = ν1 + 2, . . . , ν1 + ν2 + 1.

The algorithm presented above contemplates one ite-
ration of a V-cycle initialized with a rough estimate of the
solution on the finest grid.

4. NUMERICAL EXPERIMENTS

In this section we present the application of the
MG/OPT method to numerical simulation of the steady
flow of viscoplastic fluids. These materials are characteri-
zed by the existence of a yield stress [6, 9, 14]. This implies
that the viscoplastic material exhibits no deformation if
the shear stress imposed does no exceed the yield stress,
i.e., it behaves as an ideal rigid solid. On the other hand,
if the shear stress overpasses the yield stress, the material
will deform as a nonlinear viscous fluid in most of the ca-
ses. In fact, Herschel - Bulkley and Casson fluids present
a nonlinear stress-shear rate relationship, while Bingham
fluids behave as a viscous fluid with linear stress-shear
rate relationship (see Figure 3). Summarizing, the existen-

ce of the yield stress makes the flow of these materials to
present rigid zones, known as the plug flow, and yielded
zones.

Figura 3. Viscoplastic models

In this work we simulate the pipe flow for the classic
viscoplastic model Herschel-Bulkley. Other models like
Bingham and Casson fit the kind of nonsmooth optimiza-
tion problems under study. In fact, it is well known that
the velocity field of the flow across the cross-section of
a pipe can be approximated by the solution of the follo-
wing discretized minimization problem:

mı́n
uh∈V0

h

Jh(uh) := φ(∇uh) +
∫

Ωh

ψγ(∇uh) dx−
∫

Ωh

f uh dx,

(23)
where

φ(∇uh) =



1
p

∫
Ωh

|∇uh|p dx, H-B.

1
2

∫
Ωh

|∇uh|2 dx, Bing.

1
2

∫
Ωh

|∇uh|2 dx +
4
3
√

g
∫

Ωh

|∇uh|
3
2 dx, Casson.

In the coming numerical experiments, we present the
results of the MG/OPT algorithm applied to the numeri-
cal solution of (23) for Herschel-Bulkley. For the compu-
tations in the MG/OPT algorithm we implement a V-
cycle scheme with ν1 = ν2 = 2 as the pre and post op-
timization iterations. In all algorithms the stopping cri-
teria is fixed at a tolerance of 10−7. We perform the nu-
merical experiments in two types of domains: unit squa-
re and unit circle. Also, we compare the performance of
the MG/OPT algorithm with the performance of the un-
derlying optimization algorithm when solving the same
problem in the finest grid.

In the following tables we summarize the information
of the different grids used at each level k of the V-cycle
implemented for the MG/OPT algorithm.
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Mesh (Ωk) Nodes (nk) Elements (ne)
Ω6 8321 16384
Ω5 2113 4096
Ω4 545 1024
Ω3 145 256
Ω2 41 64
Ω1 13 16

Tabla 1. Unit circle mesh information.

Mesh (Ωk) Nodes (nk) Elements (ne)
Ω5 4225 8192
Ω4 1089 2048
Ω3 289 512
Ω2 81 128
Ω1 25 32

Tabla 2. Unit square mesh information.

4.1 Herschel-Bulkley

Herschel-Bulkley fluids are power-law materials with
plasticity. The behaviour of these fluids depends on the
value of p, which plays the role of the flow index. If
1 < p < 2 the material exhibits a pseudoplastic or shear-
thinning behaviour. On the other hand, if p > 2 the
behaviour is shear-thickening (see Figure 3). Thanks to
this index, the power-law model has been widely used to
characterize several materials that include liquid foams,
whipped cream, fluid foods, silly putty and some poly-
mers.

In the following experiments, we compute the velo-
city field for a Herschel-Bulkley material for 1 < p < 2
in a pipe, considering circle and square cross sections. In
these experiments we stablished the preconditioned des-
cent algorithm (see [9]) as the underlying optimization
algorithm Sopt. We set ε = 10−6.

Experiment 1

In this experiment we set the following parameters,
p = 1,75 and f = 1. In Table 3, each row represents
one experiment. For each experiment, we present the fi-
nest and coarsest mesh, the number of V-cycles of the
MG/OPT algorithm until the stopping tolerance is achie-
ved, the tolerance reached and the execution time of the
algorithm i.e., the CPU time when the stopping criteria is
achieved.

This experiment was initialized with the solution of
the Poisson problem,−∆uh = f . From Table 3 we can no-
tice that the number of V-cycles is similar when solving
the problem at the different levels of discretization. In Fi-
gure 5 we can see the decay of the norm |∇J>γ e|. It beha-
ves typically as in a steepest descent algorithm. However,
it decays faster in the last iterations. This behaviour is in-
herited from the preconditioned descent algorithm (see

[9, Sec. 4.3.1]). The resulting velocity field is displayed in
Figure 4. The flattening of the velocity in the center of the
pipe corresponds to the plug flow velocity, where the ma-
terial presents rigid zones.

g F. mesh. C. mesh. V. C |∇J>γ e| Time
Ω6 Ω1 11 7.38e-07 965.49

0.2 Ω5 Ω1 15 3.75e-07 258.9
Ω4 Ω1 13 4.70e-07 51.2
Ω3 Ω1 10 3.75e-07 10.04
Ω6 Ω1 26 1.08e-07 3914.61

0.4 Ω5 Ω1 17 3.79e-07 329.07
Ω4 Ω1 13 7.23e-07 51.33
Ω3 Ω1 23 5.00 e-07 24.07

Tabla 3. Results of the resolution of problem (23) with p = 1,75,
γ = 103 and f = 1.

Figura 4. Calculated velocity u for mesh Ω6. Parameters: p =
1,75, g = 0,2, γ = 103 and ε = 10−6

Figura 5. Calculated |∇J>γ e| for mesh Ω6 and g = 0,2.

In Tables 4, 5, 6 and 7, we present the performance of
the line search globalization technique, in 4 V-cycles ran-
domly chosen for Experiment 1. We consider g = 0,2, Ω6
as the finest mesh and Ω1 as the coarsest one. The expe-
riment finished after 11 V-cycles, and we perform 5 line
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search procedures at each cycle. Also, the second column
of each table let us observe that e is, indeed, a descent
direction at each level.

Updating ∇Jγ,k(u
ν1
k )>e αk l.s it

Ω1 -Ω2 -1.36e-11 1 0
Ω2 -Ω3 -8.75e-09 1 0
Ω3 -Ω4 -1.20e-05 1 0
Ω4 -Ω5 -0.0013 0.2040 1
Ω5 -Ω6 -0.0108 0.2673 1

Tabla 4. Line search for V-cycle 1

Updating ∇Jγ,k(u
ν1
k )>e αk l.s it

Ω1 -Ω2 -1.95e-08 1 0
Ω2 -Ω3 -2.50e-05 0.2228 1
Ω3 -Ω4 -0.0012 0.0121 3
Ω4 -Ω5 -2.29e-04 0.0135 3
Ω5 -Ω6 -6.99e-05 0.0232 3

Tabla 5. Line search for V-cycle 4

Updating ∇Jγ,k(u
ν1
k )>e αk l.s it

Ω1 -Ω2 -1.04e-08 1 0
Ω2 -Ω3 -5.38e-06 0.2758 1
Ω3 -Ω4 -1.41e-04 0.1493 1
Ω4 -Ω5 -1.49e-04 0.0067 4
Ω5 -Ω6 -1.84e-05 0.0722 2

Tabla 6. Line search for V-cycle 7

Updating ∇Jγ,k(u
ν1
k )>e αk l.s it

Ω1 -Ω2 -4.47e-09 1 0
Ω2 -Ω3 -1.70e-06 1 0
Ω3 -Ω4 -8.52e-05 0.0194 2
Ω4 -Ω5 -2.44e-05 0.0119 3
Ω5 -Ω6 -7.29e-06 0.0619 2

Tabla 7. Line search for V-cycle 10

Experiment 2: Comparison between MG/OPT and des-
cent algorithms

In this experiment, we compare the behaviour of the
MG/OPT approach versus an optimization algorithm
for solving the same problem in the finest grid. In the
MG/OPT method these optimization algorithms were
used as the underlying optimization algorithms as well.
In the following tables we compare the CPU time and the
stopping criteria registered for solving the problem des-
cribed in the previous experiment. Once again, in Tables
8 and 9 we compare one experiment at each row based on
the election of the finest grid.

Time (s)
Mesh MG/OPT Gradient method

Ω4 196.76 -
Ω3 73.57 2883.55

Tabla 8. Time comparison, Experiment 1

|∇J>γ e|
Mesh MG/OPT Gradient method

Ω4 3.76e-07 -
Ω3 2.09e-07 9.92e-07

Tabla 9. Norm |∇J>γ e|comparison, Experiment 1.

As it was expected, it is shown that the MG/OPT per-
formance is more efficient than the descent gradient met-
hod. Even if the gradient algorithm is stablished as the
underlying optimization algorithm of the MG/OPT. In
what follows we present the same comparison criteria for
the preconditioned descent algorithm and the multigrid
optimization scheme.

Time (s)
Mesh MG/OPT preconditioned descent alg.

Ω6 965.49 2146.37
Ω5 258.95 71.67
Ω4 51.23 63.11
Ω3 10.04 8.30

Tabla 10. Time comparison, Experiment 1

|∇J>γ e|
Mesh MG/OPT preconditioned descent alg.

Ω6 7.38e-07 9.35e-07
Ω5 3.75e-07 3.26e-07
Ω4 4.70e-07 9.52e-07
Ω3 3.75e-07 7.84e-07

Tabla 11. Norm |∇J>γ e|comparison, Experiment 1

From Tables 10 and 11 we see that the MG/OPT per-
forms better when reaching the stopping criteria in all ca-
ses. The CPU time registered and the tolerance reached
are better when working with the MG/OPT algorithm
than with the preconditioned descent algorithm at the
finest grid Ω6. In this case, CPU time decreases almost
in half. However, we can not achieve CPU time savings
in all the resolution levels. An interesting case is shown
in Table 10, in this case, the preconditioned descent al-
gorithm achieves the convergence tolerance in less time
than the MG/OPT algorithm when working with the fi-
nest level Ω5. However, in the bigger mesh Ω6, which its
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size satisfy that h6 = 1
2 h5, we reduced the time conver-

gence to half.

5. CONCLUSIONS AND OUTLOOK

We proposed and analyzed a multigrid for optimiza-
tion (MG/OPT) algorithm for the numerical solution of a
class of quasilinear variational inequalities of the second
kind. We analyzed the variational inequality via the mi-
nimization of the associated energy functional. First, we
regularized the non-differentiable part of the energy by
using a Huber regularization approach. Next, we propo-
sed a finite element discretization for the problem. The
MG/OPT algorithm was presented and we showed that
several classical models for viscoplastic flow correspond
to the class of variational inequalities under study. There-
fore, we focussed the numerical experiments on this kind
of problems.
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